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Determination of rolling anisotropy by 
extensometry 

A. SPOLIDOR 
Ecole Nationale Superieure des Mines de Saint Etienne, France 

A theory is presented for the determination of three coefficients characterizing anisotropic 
materials. These new coefficients of anisotropy advantageously replace Lankford's classic 
empirical coefficient, r, in the definition of the anisotropy of a rolled sheet. It is shown how 
these coefficients p0, p45 and pg0 may be deduced from the theory, provided certain 
assumptions are made concerning the rolled material. The validity of the theory was tested 
through experiments on rolled ultra high-purity iron sheet, po, 94~ and pg0 being determined 
by means of a special purpose-built extensometer. 

1. Introduction 
The problem of determining the anisotropy of cold- 
rolled annealed metal using tensile tests on flat speci- 
mens cut from a rolled sheet has been the subject of 
studies for many years. The purpose of these studies 
was to define one specific characteristic of the sheet: its 
drawability. 

In 1950, Lankford [ l l  proposed the coefficient, r, 
for which he is well known. It was defined as the ratio 
between the logarithms of the strains across the width 
and thickness of a flat tensile specimen stressed until it 
necks, i.e. 

log Yr/Yo 
r - (1) 

log xffxo 
where x is the thickness of the specimen, y the width of 
the specimen, and 0 represents the initial state, and 
f the necked state. 

Since its inception, this coefficient has always found 
great favour in industry, as determination is easy and 
the tensile test is simple to perform, at least in appear- 
ance. However, there is a fundamental objection to 
regarding the coefficient r as truly representative. 

Firstly, it is arbitrary to choose only the initial and 
necked states for consideration. Lankford's hypothesis 
was that r remained constant throughout the test; 
however, experiment proves this is not the case. In 
fact, r varies with true stress, c~, as may be demon- 
strated by stopping the test and performing measure- 
ments at different stages of tensile extension (Fig. 1). 

Secondly, this experimental difficulty may have 
a thermodynamic explanation. Because, in the plastic 
range, the tensile test is irreversible from the thermo- 
dynamic standpoint, the values obtained from this test 
depend not only on initial and final states but also on 
the path followed between these states, and this is not 
taken into account in the expression for r (the second 
Principle of Thermodynamics). 

Inspection of Fig. 1 does indeed reveal that the plot 
of r versus cr may vary considerably; in particular, in 
any specific test, dr/dc~ changes each time the test is 
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interrupted. Thus the shapes of the r versus (r curves 
are not identical; this reveals the influence of the path 
followed. 

Therefore, we can rewrite the expression for r in 
integral form 

fYfdY/( x'dx 
r = - -  - -  (2) 

OYo Y IOXo X 

and focus our attention on the ratio of the differential 
components, thus 

dy dx 

This defines a new instantaneous anisotropy coeffi- 
cient which includes x, y, the derivative dy/dx and 
therefore the y versus x curve at each moment of the 
tensile test. Because this new coefficient takes into 
account the path followed by the metal during the 
tensile test process, it is legitimate to consider it repre- 
sentative of the metal's anisotropy, the objections to 
r no longer being valid for 9. It should be pointed out 
that 9 versus cy plots have already been produced by 
SOLLAC and these revealed that p varied linearly 
with cr (Fig. 1). 

It should be possible to apply this coefficient indus- 
trially on the basis of the experimental results ob- 
tained here for the anisotropy of annealed rolled ultra 
high-purity iron, starting from Hill's theory. The 
method has been applied here to calculate the aniso- 
tropy of annealed cold-rolled ultra high-purity iron. It 
should also be added in passing that the French SOL- 
LAC and SOLMER companies have been directing 
their attention for some years to the advantages of 
using P to characterize the anisotropy of industrial 
rolled products [-2]. 

2. Adaptation of Hill's theory 
The coefficient, p, is introduced into the plastic theory 
of anisotropic materials by Hill's theory [3] as a 
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Figure 1 Plots of r(o) and p(cr) where cr is the tensile stress. We see 
that r and p vary with c~. Moreover r(cr) is not a simple function; on 
the other hand p(cr) follows a straight line for the three tensile 
specimens studied (after SOLLAC experiments [2~). 

parameter measuring anisotropy. This theory which 
is, in fact, based on the well-known three invariants 
11 = 0-ii, !2  = 0"ij 0-kl, 13 = 0-ij 0"kl o"ram, o f  the stress 
tensor (o"u), these three invariants being the coeffi- 
cients (constants) of the third degree equation 

det. (0-u) - 0-8u = 0 (4) 

[with 8 u = 1 (i = j ) ;  8 u = 0 (i # j ) ] ,  0-u being the roots 
of this equation, as adapted and expanded in this 
paper, is proposed to account for the complex stresses 
and strains produced in such materials undergoing 
deformation. It calls on the state of stress of an "equiv- 
alent" material subjected to uniaxial tension so that 
the direction of the applied force has no effect on this 
state, the "equivalent" material thus being isotropic. 
The switch from the tensile properties (along the vari- 
ous directions) of the anisotropic material to the ten- 
sile properties of the equivalent material is performed 
using coefficients whose expressions are homogeneous 
with 9. 

2.1. Calculation of generalized stress, 6, and 
of the corresponding strain 

Let F(chj) be a function of the internal stresses in the 
anisotropic material and 6 the uniaxial tensile stress 
applied to the equivalent isotropic material. The cal- 
culation becomes a simple matter of determining 6-, 
assuming 

F ( 0 - u ) -  6- = 0 i = 1 , 3  (5) 

j = l , 3  

6- is termed the uniaxial test "generalized" or "equiva- 
lent" stress related to the actual complex test imposed 
on the material. This complexity is due to the aniso- 
tropy of the actual material. The strain corresponding 
to 6- is designated k (Fig. 2). 

In an isotropic solid subjected to three principal 
stresses, or11, 0-2z and 0-33 are the solutions of the 
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Figure 2 Hill's theory makes it possible to represent the complex 
stress state of a deformed anisotropic material in terms of the stress 
state of an "equivalent" isotropic material, and this can be deter- 
mined by means of the coefficients of anisotropy. 

equation 

det.(0-u ) _ 0-~ij--~_ 0-3 

where 

- -  1 1 0 -  2 - -  1 2 0 -  - -  ] 3 = 0 

(6) 

I1  = 0-11 -7 0-22 -7 0-33 (7a) 

I2 = - (0-110-22 -7 0-220-33 -7 0-110-33)  

+ 0-22 + 0-2 + 0-23 (Tb) 

- -  __ O"220"13 - -  0"330-22 

-7 20"120-230"31 -7 0"11(5'220-33 (7C) 

are the coefficients (constants) of this equation. There- 
fore, 11 12 and 13 a r e  stress tensor invariants in a rota- 
tion of the reference axes used to measure 0-11, 0-22 
and 0-33. In this isotropic material, 6-, which remains 
invariant whatever direction is chosen, will therefore 
be a function of I1, 12, 13, and we can write 

6 = f ( I 1 ,  12, I3) (8) 

If we assume that hydrostatic pressure has no influ- 
ence on deformation and that F is an even function of 
0-1j in the deviatoric tensor, we are led to the expre- 
ssion 

e = F(I'2) (9) 

where I~ is the quadratic invariant expression in the 
deviatoric tensor. 

Similarly, for the anisotropi~ material, we shall 
assume that 

6- = e(J2)  = J~a/2 (10) 

in the deviatoric tensor, where F has the dimensions of 
stress and the terms composing this new invariant 
J2 are multiplied by coefficients of anisotropy C 

J2 = ZijklCijkl0-1jGkl (1 1) 

Y~ijklCijM 

giving J2 the form of a weighted mean (see Appendix). 



Setting 

we can write 

H = ~ CUk , (12) 
ijkl 

1 

J2 - -  H ~ Cuk~C~uCY~ (13) 
ijkl 

Furthermore, energy conservation during the defor- 
mation can be written 

dW, = ~ c f u d e  q 
ij 

= ~d~ (14) 

where de u is the true strain increment in the ij direc- 
tion and d0is the ~,enerahzed strain associated with 
~. This energy-conservation relationship defines dO. 

2.2. Calculation of anisotropy coefficients 
C;j , 

From the mathematical homogeneity of F, we deduce 

or 

e = F(cyu) (15) 

~F ~ ,~ ij -- F 

= (~ 

which leads to 

d W  = ~ c~ijdeij = 6dF = 
U 

OF 

ij ~ i j  

from Equation 16. Therefore 

E (yijdeij 
ij 

SO 

(16) 

(17) 

(d0 OF ~ (18) 

~F 
de u = d~-~c~u (19) 

which is the normality condition: the strain vector de u 
is orthogonal to the yield surface F(cyu) = k 2, 

From the expression 

e = f ( J2)  

= j~/2 (20) 

and from Equations 13 and 19, we can write 

dO 
deij -- ~ i~jk l CqktCYk~ (21) 

- We can now write the expression for the work 
increment 

dW = y '  chide o (22) 
U 

and this, by application of Equation 21, becomes 

1 d W  = 2 (~u 2 Cijkl%l (23) 
U'" ijkl 

d W  - dO 2 Cijkl(YiJ (ykl (24) 

which is a scalar function with dummy indices i, j, 
k and 1. 

We can therefore operate on these indices without 
changing the value of dW. Thus 

d0 
d W  - H ~  CiiklCYU~kl 

-- g ~  i~jk 1 Cklijl~kll~ij (25) 

and we deduce that Cok~ = Ckzu. 
- Let us assume that there is a single principal stress, 
~ , ;  we may write that it produces a principal strain, 

deii 

do 
de .  -- Ciiii(Yii ~ 0 (26) 

H ~  

so Cm~ # O. 
crii may also produce a strain de# (by conservation 

of volume within the plastic range) 

dO 
dejj - H (  C~j~ichi =~ 0 (27) 

We therefore conclude that Cjj. = C.# ~a 0. 
Let us assume that there is a single shear stress, cy u ; 

we may write that it produces a shear strain 

dO 
deij - H 6  Cijij~ij 7 & 0 (28) 

so Cuu r 0, and since ~u = %~, Cuu = 
Cju~ r O. 

On the other hand, c~ u cannot produce a principal 
strain dekk SO dekk = 0 and, from Equation 21 

dY 
dekk -- ~~CkkuCYU = 0 (29) 

therefore C~kU = Cukk = 0. 
- Finally we come to the non-zero anisotropy coeffi- 
cients 

Ciuj r 0 i = 1 , 3 ; j = 1 , 3  

principal stress system (30a) 

Cuu r 0 i r j shear stress system (30b) 

that is, nine non-zero coefficients 

Cl l l l  C2222 C3333 

Cl122 C2233 Cl133 

C1212 C2323 C1313 

out of the original 81 coefficients Cuk > Moreover, 
because the coefficients C~u~(i # j) on the second 
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line are a linear combination of all Cu,s, the relation 
being 

= - - ~ ( C i i i l  ~- C j j j j  - -  Ckkkk ) (31) Ciij  j 1 

where i r j # k and i # k, six independent coeffi- 
cients remain [4 -6 ]  

Cl111 C2222 C3333 principal stress system 

C1212 C2323 C1313 shear stress system 

(32a) 

(32b) 

The generalized stress ~y = j~/2, where J2 is de- 
fined by Equation 13, and may be written 

1 

0"33/ 

0"12~ 
+ 2(0"1~0"230"~1)% 0"23J 

0"31/ 

where 

and 

~ n  

Cl111 Cl122 Cl133 \ 
= C2211 C2222 C2233 

C3311 C3322 C3333 

1/2 
(33) 

(34a) 

C1212 0 0 0 ) 
(~c = 0 C2323 (34b) 

0 0 C1313 

The generalized strain is obtained by assuming con- 
servation of energy, thus 

dW = (~d~ 

= ~ 0"ijde u (35) 
ij 

H 

-t- 2 (de12dee3de31)~ f  1 

[de11~ 
(dellde22de33)r 1/de22 / 

\de33/  

de23} 

de31J 
(36) 

and 

d~ = 

2.3. Calculation of instantaneous coefficient 
of anisotropy, p 

From Equation 19, de u = 
Equation 33 

( de11~ d~ 
de22] ~ (37a) 
de33/ H~ 

( de12~ 
de23 / -- 
de31/ 
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dg(d~/d0"u) and from 

 o10"=/ 

_ d~  cd ~ ~ 0"13/ (37b) 
He \G31/ 

( 2 )  

Q'22 

($11 
�9 - - -  ( 1 )  

Figure 3 Diagram showing change of axes; (1) the rolling direction; 
(2) the transverse direction. 

Let us assume a uniaxial tensile test with the tensile 
axis inclined at an angle 0 to the principal axis of 
anisotropy (Fig. 3). 

The stress tensor measured in a reference system 
based on the tensile specimen axis is worked out from 
the tensor measured along the principal axis of aniso- 
tropy by applying a rotation matrix, R 

COS 20 sin 2 0 2 sin 0 cos 0 
R = sin 2 0 cos 2 0 - 2 sin 0 cos 0} 

| 

- sin0cos0 s in0cos0 cos20- sin20/ 
(38) 

giving 

Because ,  for  
(~Y2 z 0, (~12 

Similarly 

62 = R |(Y22 / (39) 
(Y12 \0-12/ 

a uniaxial tensile test, we may write 
= O, we obtain 

0-22J = g-1 (40) 
o12/ 

( d g l \  [de11~ 
d~2) = R/dee2  } (41) 
de12 / \de12/  

where de1 is the true deformation along the tensile 
specimen axis. Taking Equation 37a and b we can 
then write 

00 ) t / d e l ~  de [ C o :  : C2222 
|d~2 / = R ~  C121~ \dg12J / 0 \ (5 ,2/  

k Y 
matrix A (42) 

Because only planar anisotropy is involved, we 
assume 

dela = de23 = 0 (43) 



and consequently 

C1313 = C2323 = 0 (44) 

and, by virtue of Equation 40 

( dEl~ dE ( i  1) dE2] = - - R A R - '  (45) 
dE,2/ H 6  

where A is the matrix of the Cukz coefficients [in 
Equation 42]. 

Furthermore, from Equation 37a and b and taking 
the planar anisotropy into account, 6 3 = 0"33 = 0, 

we obtain 

dE (C3311 C3322) (0-11) (46) 
de3 = de33 -- H 6  \0"22 

and from Equation 40 this equals 

dE 
dE 3 -- (C3311c0820 § C3322s in20)61  (47) 

H 6  

We can then calculate the ratios d#l/dF3, 
dE2/dE3, dE, z/dE3 which have the same form as the 
instantaneous anisotropy coefficient given in Equa- 
tion 3. Thus 

d 'Jd 3 t RAR-' 
dFz/de3 = 

d#12/d~3 C3311c~  § C3322s in20  

(48) 

In fact, in Equation (3) we dealt with deformations 
along the width and thickness of the test specimen; we 
shall therefore pay particular attention to the ratio 
d e 2 / d e  3 with de  2 = dy/y and de  3 = dx/x. 

If it is assumed that the tensile tests are performed at 
0 ~ 45 ~ and 90 ~ to the rolling axis, we obtain the 
following relationships, by application of Equation 48 

Po : 

\dO3/~=o~ 

P45 \dE3//0 = 45 ~ 

= (df2"~ 
P9o \ d e 3 / o  = 90 ~ 

C l l l ,  § C2222--C3333 

C,111 - C2222 § C3333 

(49a) 

C12,2 �89 § - -  (49b) 
C3333 

C l l i ,  § C2222 -- C3333 

--CIIll -~ C2222 -}- C3333 

(49c) 

Taking Equations 40 and 49a-c and also the following 
equation 

H = ~ Cijkl ----- 2C1212 (50) 
i jkl  

for planar anisotropy, Equation 33 for 6 can be 
written as set out below 

Equivalent tensile curve along the rolling direction 
( o  = o o) 

= [ (Po § l)P9o ]1/2 
6o L 2 ( m - s  - ~ �89 + P9o) 6", (51) 

= P o ( ~ l  

and applying Equation 36 

1 
dE0 = - - d F ,  (52) 

P0 

Equivalent tensile curve at 45 ~ to the rolling direction 
(0 = 45 ~ 

945 + 1 ] ' / 2  
645 = 2(294s + 1)J 61 

and applying Equation 36 

= P , sE ,  (53) 

dE45 = 1 dE, (54) 
P45 

As the doublet fire, #0) must be an invariant versus the 
sampling in the rolled sheet and in accordance with 
the plasticity assumptions, it is sufficient to calculate 
two equivalent tensile curves (0 = 0 ~ and 0 = 45 ~ 
to check their possible superposition on a graph, 
which will be done later in this paper. 

We have thus developed a detailed calculation 
allowing us to connect the generalized or equivalent 
stress, 6, in the isotropic material to the stress, 6 , ,  
effectively applied to the test specimen in the uniaxial 
tensile test. This has been achieved by using three 
instantaneous coefficients of anisotropy, Po, 945 and 
990, which have the form of Equation (3). The same is 
true for the generalized strain dE. 

P0,945 and 99o may, therefore, be used to define the 
anisotropy of the rolled solid. These coefficients can be 
calculated from the results of tensile tests on speci- 
mens cut from the rolled sheet and oriented at 0 ~ 45 ~ 
and 90 ~ to the rolling direction, as will be seen in 
subsequent sections. 

3. Application of theory to an anisotropic 
rolled sheet in the uniaxial tensile test. 
Determination of p coefficients of 
anisotropy 

This theory only applies to a material that meets the 
following conditions 

(i) There is no Bauschinger effect (F is an even 
function of cyu); there is continuity when changing 
from tension to compression; 

(ii) hydrostatic pressure ~ = �89 Y,i 0-u has no effect 
on deformation. It follows that y~ 0-'i~ = 0 in the devi- 
atoric tensor; 

(iii) the solid is practically incompressible: Y~de~i = 0; 
(iv) the solid has three orthogonal planes of sym- 

metry for anisotropy; the normals to these planes 
being the principal axes of anisotropy; 

(v) to a first approximation, we assume that the 
anisotropy coefficients are independent of stress dur- 
ing the tensile test, something that is not true in 
practice. Therefore we have to determine these coeffi- 
cients at each stage in the deformation. 

(vi) The deformation is independent of temperature 
and of strain rate during the test. In fact, the metal will 
be studied at different temperatures and strain rates 
and the values of these parameters which verify the 
other previous assumptions will be determined, if they 
exist. 
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Once we have set out these assumptions we can 
apply these theories and adapt our calculation to the 
case of an anisotropic rolled sheet material deformed 
in an uniaxial tensile test. This test is chosen because it 
is simple to put into practice. 

Because the 4y versus # curves are invariant when 
the reference axes of the rolled specimen are changed, 
we shall consider tensile tests along several directions 
in this rolled sheet. In particular, we shall consider 
tensile tests performed along the rolling direction and 
at 45 ~ to this direction. The calculation outlined in 
Section 2 resulted in Equations 51-54 and these en- 
able curves of ~ versus g to be plotted for tensile tests 
at 0 ~ and 45 ~ to the rolling direction. 

In these equations, ~1 and d~t are the true stress 
and the differential of the strain actually applied to the 
specimen. The new coefficients, Po, P45 and P90, which 
are functions of the six independent coefficients Cukz, 
appear in these equations. Po, P45 and Pg0 are defined 
as the ratios of the true strains across the width and 
thickness of flat specimens taken at 0 ~ 45 ~ and 90 ~ to 
the rolling direction. 

_- (d 2) 155a  
Po \dO3 )o  = o ~ 

= (dY2) (55b) 
P4-5 \ d g , 3 . j e  = 45: 

1 0 9 0  \ d @ 3 / O  = 90 ~ 

These new anisotropy coefficients have the same 
form as those in Equation 3. The only difference is 
that our calculation means that three coefficients 
are required to describe the anisotropy of a rolled 
sheet. These three coefficients can be calculated if the 
metal under study satisfies the assumptions set out in 
this section. The "equivalent" material whose defor- 
mation is governed by (y and # must, therefore, be 
isotropic; and for tests performed at 0 ~ and 45 ~ to the 
rolling direction, the curves ~o = ~o(eo) and 
6~s = ~)45(e45), given by Equations 51-54 should co- 
incide. Provided this condition is met, the coefficients 
%, P45 and 99o may be adopted to characterize rolled 
sheet anisotropy. 

4. Description of the extensometer adapted 
to verify this theory in the case of planar 
anisotropy (rolled sheet) 

Because the coefficients P0, P4s and P9o have the form 
(dy/dx)(x/y) (Equation 3), it is necessary to find the 
derivative dy/dx and therefore the curve y versus x of 
the width of the tensile test specimen plotted against 
its thickness over time. 

It was possible to establish this curve by designing 
and constructing an extensometer using an inductive 
sensor and allowing the width and thickness of the 
specimen to be recorded simultaneously on a two- 
channel chart recorder (Fig. 4a-c). When the test was 
set up, the weight of the extensometer was balanced by 
two counterweights (Fig. 4d). 

5 7 3 6  

Tests were performed at different speeds of testing 
and at three temperatures: ambient, 300 ~ achieved 
by passing a heavy current through the specimen 
(Joule effect), and - 4 0 ~  achieved by cooling the 
specimen using liquid nitrogen and conducting heat 
away through two rods of pure copper. The temper- 
ature was measured by a thermocouple clamped to the 
specimen. 

The following testing speeds, V, were chosen: 0.02, 
0.2, 2 and 20 cm min-  1 at ambient temperature. For  
temperatures of - 4 0  and 300~ tests were made 
only at 20 cm rain-1 so that the specimen remained 
under isothermal conditions. 

Finally, the accuracy achieved was on the order of 
10 ~tm for the width y and 5 gm for the thickness x. 

5. Calculation of coefficients of anisotropy 
for a rolled high-purity iron sheet 

The above calculations were applied to determine the 
coefficients of anisotropy of a flat-rolled ultra high- 
purity iron. The flat test pieces considered were realiz- 
ed on the basis of the following sequences: 

(i) ultra high-purity iron, obtained by chemical ex- 
traction with butyl acetate and FeC13 sublimation, 
pure iron sponge fabrication from oxide hydrogen 
reduction, zone refining of the sponge under vacuum 
and refusion in an ingot by an electron beam; 

(ii) purity - all elements under 1 p.p.m.; 
(iii) flat forging and hot rolling of the ingot at 
l l00~ 

(iv) cleaning of the hot-rolled sheet by grinding; 
(v) cold rolling to 1 mm thick (90% reduction). 
The crystallographic anisotropy of such a cold- 

rolled sheet, before annealing, is given on the {1 1 0} 
pole figure established by the author on an X-ray 
goniometer by complementary reflection and trans- 
mission techniques [7] Figs la and 13b, [8], [9], Figs 
la  and 9b). Test specimens having the dimensions 
shown in Fig. 5 were cut at 0 ~ 45 ~ and 90 ~ to the 
rolling direction (Fig. 6). These specimens were then 
annealed at 700 ~ in a secondary vacuum and set up, 
on a tensile test machine fitted with the extensometer 
described in Section 4. 

As this theory does not take temperature T, and 
strain rate, g = dYl/dt, in the tensile test into ac- 
count, we carried out our tests at the temperatures and 
with the testing speeds listed earlier. 

Test data were recorded and processed in the fol- 
lowing stages: 

(i) initial specimen cross-sectional dimensions 
Xo and Y0 were measared; 

(ii) the variations of ~- with y and of x with y were 
recorded graphically, Y being the force applied and 
y the abscissa. This was done for each temperature 
T and for each speed, V, which were all recorded for 
each of the three angles of 0 ~ 45 ~ and 90 ~ to the rolling 
direction. Thus, for each preset pair of parameters 
(T, V), three ~ versus y and x versus y curves are 
required for any specific planar anisotropy calculation 
(Fig. 7a-c); 

(iii) the curve of ~1 = .~/S = J~/xy versus 
y was plotted; 



(b) 

Inductive 

Spring ~ t  
Knife-edges 
Rollers 
Test specimen 

10 cm 

~ a  

:i Z 

Lc(~ ";;2"," ;" 

lh 
Figure 4 The extensometer: (a) top view, (b) schematic diagram. 
This extensometer was especially designed and built for this study 
using non-magnetic austenitic stainless steel. (c) The extensometer 
with its electronic connectors. (d) The extensemeter set up on the 
tensile testing machine. 

(iv) a table  was d r a w n  up  wi th  the m a i n  h o r i z o n t a l  
d iv is ions  c o r r e s p o n d i n g  to different  va lues  of 61 
(Table  I). In  this table,  ~ a n d  ~ are ca l cu la t ed  f rom 
E q u a t i o n  51-54;  ~ is ca lcu la ted  by g raph ic  i n t e g r a t i o n  
of the func t i on  

~ ' Q( = u) du  
f,) (~ i i n l t i a  I 

where  

1 
Q(81) = 

which  therefore  requires  the g raph  of Q versus  ~1 to be 
p lo t t ed  (Fig. 8). 

E E 
E E 

S 

J 

70ram t 
100 mm 1 

Figure 5 The flat tensile test bar based on ISO 12.5 mmx 50ram 
specimen. 

Figure 6 Cutting the tensile specimen from sheet: definition of 
0 (RD is the rolling direction). The new instantaneous anisotropy 
coefficient, p, is a function of 0. 
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(b) 

(a) 

5000 N 
%=1.126 m m ~  
lYo = 1 ~  

lyf = 10.21 mm 

Ax=10 prn t 

250 N} . 
I i 

-2  -1 

y(mm) 

i 

-2 
y(mm) 

5000 N 
%=1.155 mm / 
[)/o=12.45 m m ~  

xtyV '"v 

[yf=l 1.05 mm 

Ax=10 pm 

250 N 
I 

-1 

,.~(N) 

E 
E 

,~(N) 

-g 
E 

T o  s u m  up ,  T a b l e  I g ives  v a l u e s  of  ~0  for  go 

a n d  ~ , 5  for  g~5 a n d  t h e r e f o r e  gives  f u n c t i o n s  ~0 

a n d  d~45, t h e  c u r v e s  of  w h i c h  m a y  b e  p l o t t e d  o n  

t h e  s a m e  g r a p h .  I t  c a n  b e  s een  t h a t  in  t he  case  so 

::--0:#1m21/ 
�9 t 

-2  

(c) y ( m m )  

5000 N ~,~(N) 
% =1.054 mm 
lYo = 1 2 " 3 0 ~  

Ax=10 ,um 

250 N 
k 

-'1 

Figure 7a N(y) and x(y) plots obtained by extensometer measure- 
ments on tensile tests on specimens taken (a) along the rolling 
direction, 0 = 0~ (b) at 45 ~ to the roiling direction, 0 = 45 ~ and (c) at 
90 ~ to the rolling direction, 0 = 90~ T = 20 ~ V = 2cm min - 1 in all 
cases. 

far  c o n s i d e r e d ,  i.e. for  T = 20 ~ a n d  V = 2 c m  r a i n -  l, 

t h e  d~o a n d  ~45 c u r v e s  v i r t u a l l y  c o i n c i d e  (Fig.  9). 

T h i s  c o i n c i d e n c e  o f  t he  t w o  c u r v e s  is n o t  o b s e r v e d  

for  a n y  of  t he  o t h e r  t e m p e r a t u r e s  o r  t e s t i n g  s p e e d s  

(Fig.  10a-c) .  

I t  m a y  t h e r e f o r e  b e  c o n c l u d e d ,  o n  t h e  bas i s  of  o u r  

s t a t e m e n t s  in  S e c t i o n  3, t h a t  for  t ens i l e  t e s t i n g  a t  

T = 2 0 ~  a n d  V = 2 c m m i n  -1  t h e  u l t r a  h i g h - p u r i t y  

i r o n  i n v e s t i g a t e d  c o n f o r m s  w i t h  p r e v i o u s  h y p o t h e s i s .  

O u r  t h e o r y  app l i e s  in  th i s  case  a n d  we c a n  d e t e r m i n e  

t he  v a l u e  of  t he  coef f ic ien t s  Po, 9r a n d  99o w h i c h  

c h a r a c t e r i z e  t he  a n i s o t r o p y  o f  t he  r o l l e d  sheet .  Be-  

c a u s e  t he se  coef f ic ien ts  h a v e  b e e n  r e c o r d e d  in  T a b l e  

I a n d  as  t h e y  a p p e a r  to  v a r y  w i t h  ~1 ,  t h e y  c a n  be  

p l o t t e d  o n  a g r a p h  a g a i n s t  th i s  s t ress  (Fig.  11) a n d  b e  

e x t r a p o l a t e d  l i n e a r l y  to  ze ro  s t ress  ( in i t i a l  m a t e r i a l  

T A B L E I Calculation of (y = ~0 (~) for 0 = 0 ~ and 0 = 45 ~ (ultra high-purity iron) T = 20 ~ V = 2 cm min- 1 

0 Xo Yo ~t (MPa)~# x y dy dy x - -  p 
dx dx y 

(deg) (mm) (mm) ~r 
- ( N )  ( m m )  ( m m )  

xy 

0 ~ 1.126 12.41 3051 1.109 11.85 21.21 1.985 
45 ~ 1.155 12.45 232.2 3280 1.153 12.25 9.5 0.894 
90 ~ 1.054 12.30 2815 1.017 11.92 13.41 1.144 

0 ~ 1.126 12.41 3357 1.090 11.48 21.21 2.014 
45 ~ 1.155 12.45 268.3 3660 1.132 12.05 9.5 0.892 
90 ~ 1.054 12.30 3142 1.001 11.70 13.41 1.147 

0 ~ 1.126 12.41 3526 1.074 11.14 21.74 2.096 
45 ~ 1.155 12.45 294.7 3880 1.111 11.85 9.5 0.890 
90 ~ 1.054 12.30 3342 0.987 11.49 12.86 1.105 

0 ~ 1.126 12.41 3703 1.038 10.51 19.25 1.901 
45 ~ 1.155 12.45 339.4 4100 1.055 11.45 9.5 0.875 
90 ~ 1.054 12.30 3587 0.953 11.09 11.76 1.010 

0 ~ 1.126 12.41 3700 1.025 10.21 47.6 4.778 
45 ~ 1.155 12.45 353.5 3921 1.044 10.625 9.5 0.933 
90 ~ 1.054 12.30 3635 0.940 10.94 11.76 1.010 

P 6 = Q(el) 

P.61 = 1/P 

(MPa) 

0.625 145.12 1.6 
0.583 135.37 1.715 

0.627 168.22 1.595 
0.5831 156.4 1.715 

0.620 182.7 1.613 
0.583 171.8 1.715 

0.604 205.0 1.656 
0.583 197.87 1.712 

0.593 209.62 1.686 
0.581 205.38 1.721 

= log x~176 ~,o,,,Q(u)du 
xy 

• 10 -4 • 10 -4 

613 0 
179 0 

1103 782 
527 597 

1552 1502 
882 1206 

2475 3000 
1742 2580 

2891 3694 
2595 4145 

5738 
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Figure 8 Qo(~) and Q45(~ ~) plots from which eo and e-45 can be 
calculated by graphic integration. T = 20 ~ V = 2 cm rain a. 

A 

(3.. 
~E v 

200 - 

150 " 

100 

50-  

0 15'00 30'00 

e ( x l O  4) 

Figure 9 Plot of graphs of 60 = ~o(go) and 645 = d0~s(g45) for 
tensile tests at T = 20 ~ and V = 2 cm rain-  1 It can be seen that 
the curves virtually coincide in this case. 

c o n d i t i o n ) ,  f o r  e x a m p l e  b y  u s i n g  t h e  m e t h o d  o f  l e a s t  

s q u a r e s .  I t  s h o u l d  b e  n o t e d  t h a t  t h e  p o i n t s  r e p r e s e n t -  

i n g  P45 a n d  99o fal l  p r a c t i c a l l y  o n  a s t r a i g h t  l i n e  

w h e n  p l o t t e d  a g a i n s t  ~1 ,  a f a c t  t h a t  w a s  o b s e r v e d  b y  

S O L L A C  [-2] i n  s i m i l a r  t e n s i l e  t e s t s  (F ig .  1). 

) 

Figure 10 Unlike the test in Fig. 9, the qb o arid 045 curves do not 
coincide. This may be caused by the fact that our assumptions are 
not satisfied by the material for these tensile test parameters. 
(a) T = 20 ~ (b) T = 300 ~ (c) T = - 40 ~ V = 20 cm m i n -  ~ in 
all cases. 
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Figure 11 Variation of 9o, P45 and J39o with ~1 applied to the test 
specimens. Extrapolation to the initial state (~1 = 0) provides us 
with the coefficient of anisotropy values for the rolled material 
under study (ultra high-purity iron). 

For the ultra high-purity iron under study, extra- 
polation to ~1 = 0 gives the following coefficients of 
anisotropy: Po = 1.98, P45 = 0 . 8 9 ,  P9o = 1.43. 
These coefficients define the anisotropy of the material 
according to our study. 

6.  C o n c l u s i o n  
In place of Lankford's coefficient, r, we have introdu- 
ced three new coefficients of anisotropy, Po, 945 and 
P9o- These are defined as the ratios between the true 
strains across the width and thickness of flat tensile 
test specimens taken at 0 ~ 45 ~ and 90 ~ to the rolling 
direction of the sheet investigated. Their relationship 
is given by Equation 3. These coefficients, in fact, 
proceed from our adaptat ion of Hill's theory to the 
calculation of the anisotropy of a fiat-roiled sheet and 
they obey the 2nd Principle of Thermodynamics, on 
the contrary of t'. They can be used to give a global 
description of the anisotropy of analogous products 
and notably of flat-rolled metal products used in 
industry. 

We have achieved a practical application of these 
results in calculating the anisotropy of an annealed 
cold-rolled ultra high-purity iron sheet. Implementa- 
tion consisted in using the uniaxial tensile test com- 
bined with an extensometer specially designed and 
constructed in our laboratory. We observed that the 
pure iron under investigation concorded with our 
hypothesis for tensile tests carried out at a temper- 
ature of 20 ~ and with a testing speed of 2 cm rain 1 
values for which the (~o and d~45 curves coincided. 
These experimental results verify our theory and 

5 7 4 0  

calculations performed to apply it [7]. It should be 
noted that calculations which appear complicated 
have led us to simple results, essentially embodied in 
Equations 51 55. It is a simple matter to program 
these results into a computer so that the results of the 
various tensile tests can be processed and the d~0 and 
qb45 curves plotted automatically. Applying this the- 
ory we managed to establish the following values for 
the three coefficients of anisotropy of the rolled, ultra 
high-purity iron sheet under study [7]; 9o = 1.98; 
P45 = 0.89; P3o = 1.43. 

It is then possible to describe and quantify a rolling 
texture on the basis of a fundamental plasticity theory, 
the formation of such rolling textures having been 
explained previously elsewhere [7-9]. 

Appendix.  Demonstrat ion of the validity of the 
expression for the -/2. 

We demonstrate below that the expression for J2 

1 
J2 = ~ ~ Cqk,0-ij0-kt (13) 

ijkl 

which has the form of a weighted average, is legit- 
imate. 

The second invariant expression for an isotropic 
solid (limiting case) is as follows (in the deviatoric 
tensor) 

1 
I~ = 0"22 ~- 0"23 ~- 0"23 -}-~ [((311 - 0-22) 2 

-}-(0"22 - -  0"33) 2 -}- (0-11 - -  0"33) 2]  (A1) 

which can be written 

1(0- 2 -]- 0-222 -~- 0"23) 12' = ~ 1 

1 
- -  (0"110"22 -]- 0"220"33 At- 0"110"33) 

3 

-~-0"22 -]- 0"223 @ 0"23 (A2)  

Moreover (from Equation 13) 

1 
J2 = ~ [Ciiii0"i 2 ~- 2Ciijj0"ii0"JJ ~- 2Cijij 0-2"] (A3) 

in accordance with the allowed expressions for Cijk~ 
(see Equations 31 and 32). 

Consequently, at the limit for an isotropic material 

Cl111  1 

H 3 
with Cl111 

2Cl122  

H 

C1212 
- 1 

H 

z C2222 

1 
with Cl122  = 

3 

~- C2233 

w i t h  C1212 = C1313 

C3333 

(A4) 

Cl133  

(A5) 

C2323 

(16) 



As H = 2 C 1 2 1 2  (see Equation 50), we have thus 
verified that Equation A6 always holds. 

From Equations A4 and A5 we deduce that 

Cl111 = - 2Cl122 (AT) 

which also holds (see Equation 31 with C 2 2 z 2  = 

C3333)" 
In conclusion, the expression for Je is also valid for 

low anisotropies and at the limit for an isotropic solid. 

References 
1. W. T. LANKFORD,  S. C. SNYDER and J. A. BAUSHER, 

Trans. A S M  42 (1950) 1197. 
2. G. JEGADEN,  J. VOINCHET and P. ROCQUET,  Mere. Sci. 

Rev. Metall. LIX (4) (1962). 

3, R. HILL, The mathematical theory of plasticity (Clarendon 
Press, Oxford, 1964). 

4, M . J .  HILLIER, Mechanics of Sheet forming (University of 
Waterloo, Mechanical Engineering Department,  Waterloo, 
Ontario, 1968). 

5, Idem, "Metallurgical plasticity" (Dept. de M6tallurgie, Ecole 
Nationale Suparieure des Mines de Saint-Etienne, 1970). 

6. R.N.  DUBEY and M. J. HILLIER, Basic Eng. A S M E  HQ 71 
(Met-p) March 1971. 

7, A. SPOLIDOR, These de Doctorat  d 'Etat as Sciences Phy- 
siques, Universita de Paris VI (1983). 

8. A. SPOLIDOR,  J. RIEU and C. GOUX, J Auto. M~tall. Paris 
(63) 3 October 1973. 

9. A. SPOLIDOR and C. GOUX, J. Mater. Sci. 28 (1993) 4325. 

Received 2 February 
and accepted 7 November 1995 

5741 


